Non Existence of Principal Values of Signed Riesz Transforms of Non Integer Dimension

نویسندگان

  • ALEIX RUIZ
  • XAVIER TOLSA
چکیده

In this paper we prove that, given s ≥ 0, and a Borel non zero measure μ in Rm, if for μ-almost every x ∈ Rm the limit lim ε→0 ∫ |x−y|>ε x −y |x −y|s+1 dμ(y) exists and 0 < lim supr→0 μ(B(x, r))/r s < ∞, then s in an integer. In particular, if E ⊂ Rm is a set with positive and bounded s-dimensional Hausdorff measure Hs and for Hs-almost every x ∈ E the limit

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square function and Riesz transform in non-integer dimensions

Following a recent paper [10] we show that the finiteness of square function associated with the Riesz transforms with respect to Hausdorff measure H implies that s is integer.

متن کامل

N ov 2 00 8 Linear dimension - free estimates for the Hermite - Riesz transforms ∗ Oliver Dragičević and Alexander Volberg

We utilize the Bellman function technique to prove a bilinear dimension-free inequality for the Hermite operator. The Bellman technique is applied here to a non-local operator, which at first did not seem to be feasible. As a consequence of our bilinear inequality one proves dimension-free boundedness for the Riesz-Hermite transforms on L with linear growth in terms of p. A feature of the proof...

متن کامل

1 5 N ov 2 00 7 Dimension free bilinear embedding and Riesz transforms associated with the

We utilize the Bellman function technique to prove a bilinear dimension-free inequality for the Hermite operator. The Bellman technique is applied here to a non-local operator, which at first did not seem to be possible. An indispensable tool in order to make the proofs dimension-free is a certain linear algebra lemma concerning three bilinear forms. As a consequence of our bilinear inequality ...

متن کامل

Examining and calculation of non-classical in the solutions to the true elastic cable under concentrated loads in nanofilm

Due to high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid substrate and subjected to an inclined concentrated line load acting on the surface of the layer is investigated based on Gurtin-Murdoch continuum model to consider surface stre...

متن کامل

Examining and calculation of non-classical in the solutions to the true elastic cable under concentrated loads in nanofilm

Due to high surface-to-volume ratio of nanoscale structures, surface stress effects have a significant influence on their behavior. In this paper, a two-dimensional problem for an elastic layer that is bonded to a rigid substrate and subjected to an inclined concentrated line load acting on the surface of the layer is investigated based on Gurtin-Murdoch continuum model to consider surface stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010